Implementasi Data Mining Dalam Menentukan Pola Pembelian Obat Menggunakan Metode Apriori
Main Article Content
Abstract
The fierce competition in the pharmacy industry requires sellers to continue to improve their sales strategies to increase sales of medicines. The availability of different types of medicines that consumers need is one step in overcoming this. This research uses an a priori algorithm to determine drug purchasing patterns. By using a priori algorithms in pharmacies, a system can be created to determine drug purchasing patterns, which is useful in determining drug purchasing targets well and can improve sales strategies. The data studied are one year's retail and wholesale transaction data. The pattern of drug purchasing associations obtained with a minimum support of 5% and a minimum confidence of 60% produces 8 association rules. The association rule with the highest confidence of 96.1% is that if consumers buy pseudoephedrine 30 mg and amoxicillin trihydrate 500 mg, they will also buy paracetamol 500 mg. Drug types that meet the minimum support and minimum confidence are Pseudoephedrine 30mg, Amoxicillin Trihydrate 500mg, Mefenamic Acid 500mg, Prednisone Triman 5mg pot, Cetirizine Hcl 10mg, Cefadroxil Monohydrate 500mg and Paracetamol 500mg.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Saefudin and S. DN, “Penerapan Data Mining Dengan Metode Algoritma Apriori Untuk Menentukan Pola Pembelian Ikan,” J. Sist. Inf., vol. 6, no. 2, pp. 110–114, 2019, [Online]. Available: https://doi.org/10.30656/jsii.v6i2.1587.
S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, pp. 56–63, 2018, [Online]. Available: https://doi.org/10.32672/jnkti.v1i2.771.
A. Mardiah and Yulia, “Implementasi Data Mining Menggunakan Algoritma Apriori Pada Penjualan Suku Cadang Motor,” J. Ilmu Komput., vol. 14, no. 2, pp. 125–134, 2021, [Online]. Available: https://doi.org/10.24843/JIK.2021.v14.i02.p07.
Z. Yunizar and Nurarifah, “Sistem Monitoring Revass (Revanue Assurance) Pelanggan Pasang Baru Di PT. PLN ULP Krueng Geukuh Lhokseumawe,” J. Teknol. Terap. Sains, vol. 2, no. 1, 2021.
N. N. Merliani, N. I. Khoerida, N. T. Widiawati, L. A. Triana, and P. Subarkah, “Penerapan Algoritma Apriori Pada Transaksi Penjualan Untuk Rekomendasi Menu Makanan Dan Minuman,” J. Nas. Teknol. dan Sist. Inf., vol. 08, no. 01, pp. 9–16, 2022, [Online]. Available: https://doi.org/10.25077/TEKNOSI.v8i1.2022.9-16.
P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus : Toko Sinar Harahap),” J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 12, no. 2, pp. 51–61, 2022.
M. Afdal and M. Rosadi, “Penerapan Association Rule Mining Untuk Analisis Penempatan Tata Letak Buku Di Perpustakaan Menggunakan Algoritma Apriori,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, pp. 99–108, 2019, doi: http://dx.doi.org/10.24014/rmsi.v5i1.7379.
S. F. Rodiyansyah, “Algoritma Apriori untuk Analisis Keranjang Belanja pada Data Transaksi Penjualan,” Infotech J., vol. 1, no. 2, pp. 36–39, 2015.
H. Kusumo, E. Sediyono, and M. Marwata, “Analisis Algoritma Apriori Untuk Mendukung Strategi Promosi Perguruan Tinggi,” Walisongo J. Inf. Technol., vol. 1, no. 1, pp. 51–62, 2019, [Online]. Available: https://doi.org/10.21580/wjit.2019.1.1.4000.
A. W. O. Gama, I. K. G. D. Putra, and I. P. A. Bayupati, “Implementasi Algoritma Aprori Untuk Menemukan Frequent Itemset Dalam Keranjang Belanja,” Teknol. Elektro, vol. 15, no. 2, pp. 27–32, 2016, doi: http://dx.doi.org/10.24843/MITE.1502.04.
Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Menggunakan Metode Apriori Pada Supermarket Sejahtera Lhokseumawe,” Techsi, vol. 6, no. 1, pp. 133–155, 2015.
M. Fauzy, K. R. S. W, and I. Asror, “Penerapan Metode Association Rule Menggunakan Algoritma Apriori pada Simulasi Prediksi Hujan Wilayah Kota Bandung,” e-Proceeding Eng., vol. 2, no. 3, pp. 1–6, 2015.
S. Qomariah, Basrie, and S. F. Pa’a, “Implementasi Algoritma Apriori Pada Data Penjualan Produk Asesoris CV Princes Diary Samarinda,” J. Sains Terap. Teknol. Inf., vol. 12, no. 2, pp. 31–37, 2020, [Online]. Available: http://dx.doi.org/10.46964/justti.v12i2.321.
R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 37–46, 2020, doi: 10.29408/edumatic.v4i1.2081.
M. I. Ramdhani, G. Gata, B. D. Andah, and D. Mahdiana, “Penerapan Algoritma Apriori Untuk Menentukan Tata Letak Penjualan Di Toko Swalayan,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 2, no. 2, pp. 1032–1040, 2023, [Online]. Available: https://senafti.budiluhur.ac.id/index.php/senafti/index.