Green Technology of Processing Chicken Egg Shell Waste into Nanocalcium for Osteoporosis Prevention: A Literature Study

Main Article Content

Sunardi

Abstract

Egg shells have a high enough calcium content which can.be used as a source of calcium. The elderly population is increasing globally and is predicted to reach 1.5 billion by 2050. The quality of life of the elderly must be considered, for example by developing functional foods for the elderly. This literature review will discuss the development of functional foods to reduce the risk of osteoporosis in the elderly. Oxidative stress is one of the factors that accelerates the occurrence of osteoporosis. Various antioxidants, including vitamin C, vitamin E, polyphenols, or lycopene, have been shown to have antioxidant activity, thereby reducing the risk of osteoporosis. In addition, the application of nanocalcium from chicken egg shells in various food products has been reported to increase calcium intake, and its use is environmentally friendly because it can contribute to reducing food waste. The application of antioxidants and nanocalcium can be a good combination, but the amount of some antioxidants must be considered so as not to interfere with calcium bioavailability. Therefore, this literature review aims to explore functional foods for the elderly to reduce the risk of osteoporosis, especially with antioxidants and nanocalcium from chicken egg shells. Eating preferences and eating patterns of the elderly are also a consideration to determine the appropriate form of functional food for the elderly. The results presented in this literature review can be the basis for the development of new food products enriched with nanocalcium from chicken egg shells for the elderly.

Article Details

How to Cite
[1]
S., “Green Technology of Processing Chicken Egg Shell Waste into Nanocalcium for Osteoporosis Prevention: A Literature Study”, JSE, vol. 9, no. 3, Jul. 2024.
Section
Articles

References

S. Chavda, B. Chavda, and R. Dube, “Osteoporosis Screening and Fracture Risk Assessment Tool: Its Scope and Role in General Clinical Practice,” Cureus, Jul. 2022, doi: 10.7759/cureus.26518.

P. L. Xiao et al., “Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis,” Osteoporosis International, vol. 33, no. 10, pp. 2137–2153, Oct. 2022, doi: 10.1007/S00198-022-06454-3/METRICS.

P. Chotiyarnwong et al., “Is it time to consider population screening for fracture risk in postmenopausal women? A position paper from the International Osteoporosis Foundation Epidemiology/Quality of Life Working Group,” Archives of Osteoporosis 2022 17:1, vol. 17, no. 1, pp. 1–24, Jun. 2022, doi: 10.1007/S11657-022-01117-6.

J. Pepe et al., “Osteoporosis in Premenopausal Women: A Clinical Narrative Review by the ECTS and the IOF,” J Clin Endocrinol Metab, vol. 105, no. 8, pp. 2487–2506, Aug. 2020, doi: 10.1210/CLINEM/DGAA306.

N. Salari et al., “The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis,” Journal of Orthopaedic Surgery and Research, vol. 16, no. 1. BioMed Central Ltd, Dec. 01, 2021. doi: 10.1186/s13018-021-02772-0.

J. A. Kanis et al., “SCOPE 2021: a new scorecard for osteoporosis in Europe,” Arch Osteoporos, vol. 16, no. 1, pp. 1–82, Dec. 2021, doi: 10.1007/S11657-020-00871-9/FIGURES/44.

C. Willers et al., “Osteoporosis in Europe: a compendium of country-specific reports the SCOPE review panel of the IOF,” vol. 17, no. 23, 2022, doi: 10.1007/s11657-021-00969-8/Published.

A. M. Burden et al., “Osteoporosis case ascertainment strategies in European and Asian countries: a comparative review,” Osteoporosis International, vol. 32, no. 5, pp. 817–829, May 2021, doi: 10.1007/S00198-020-05756-8/TABLES/2.

M. Sato, M. Inaba, S. Yamada, M. Emoto, Y. Ohno, and Y. Tsujimoto, “Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study,” J Bone Miner Metab, vol. 39, no. 6, pp. 1082–1090, Nov. 2021, doi: 10.1007/S00774-021-01253-Y/METRICS.

J. Jurnal, K. Besurek, and I. R. Dewi, “Kekurangan Kalsium menyebabkan Osteoporosis,” Jurnal Kebidanan Besurek, vol. 8, no. 2, pp. 9–14, Dec. 2023, doi: 10.51851/JKB.V8I2.434.

O. Topal, M. Çina Aksoy, İ. M. Ciriş, D. K. Doğuç, S. Sert, and S. Çömlekçi, “Assessment of the effect of pulsed electromagnetic field application on the healing of bone defects in rats with heparin-induced osteoporosis,” Electromagn Biol Med, vol. 39, no. 3, pp. 206–217, Jul. 2020, doi: 10.1080/15368378.2020.1762636.

A. Cina and F. Galbusera, “Advancing spine care through AI and machine learning: overview and applications,” EFORT Open Rev, vol. 9, no. 5, pp. 422–433, May 2024, doi: 10.1530/EOR-24-0019.

M. Isleyen, M. Cina, H. Asci, I. Ilhan, and R. Oguz Yuceer, “The Preventive Effect of Preoperative and Postoperative Selenium on the Medication-Related Osteonecrosis of the Jaw: An Animal Study in Rats,” Journal of Oral and Maxillofacial Surgery, Mar. 2024, doi: 10.1016/J.JOMS.2024.03.026.

Y. Shen et al., “The Global Burden of Osteoporosis, Low Bone Mass, and Its Related Fracture in 204 Countries and Territories, 1990-2019,” Front Endocrinol (Lausanne), vol. 13, p. 882241, May 2022, doi: 10.3389/FENDO.2022.882241/BIBTEX.

N. Salari et al., “The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis,” J Orthop Surg Res, vol. 16, no. 1, pp. 1–20, Dec. 2021, doi: 10.1186/S13018-021-02772-0/FIGURES/8.

Supriyatiningsih et al., “Predictive factors and the relationship between the early detection of osteoporosis and pathological fractures in Indonesian menopausal women,” Bali Medical Journal, vol. 11, no. 1, pp. 556–562, 2022, doi: 10.15562/bmj.v11i1.3258.

B. P. P. Suryana et al., “Indonesian Rheumatology Association (IRA) Recommendations for Diagnosis and Management of Glucocorticoid-induced Osteoporosis,” Indonesian Journal of Rheumatology, vol. 14, no. 2, pp. 660–682, Nov. 2022, doi: 10.37275/IJR.V14I2.216.

S. Bardosono et al., “Relevance of Calcium and Vitamin D in Supporting Bone Health: An Expert Panel Recommendation in Indonesia,” International Journal of Nutrition and Food Sciences 2020, Volume 9, Page 54, vol. 9, no. 2, pp. 54–62, May 2020, doi: 10.11648/J.IJNFS.20200902.13.

S. R. Julianti, “Karakterisasi Fisikokimia Dan Bioavailabilitas Nanokalsium Hasil Ekstraksi Tulang Ikan Bandeng (Chanos Chanos) Menggunakan Larutan Basa,” Dec. 2017, Accessed: Apr. 20, 2019. [Online]. Available: http://repository.ub.ac.id/8034/

M. Du, J. Chen, K. Liu, H. Xing, and C. Song, “Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair,” Compos B Eng, vol. 215, p. 108790, Jun. 2021, doi: 10.1016/J.COMPOSITESB.2021.108790.

G. Vanthana Sree, P. Nagaraaj, K. Kalanidhi, C. A. Aswathy, and P. Rajasekaran, “Calcium oxide a sustainable photocatalyst derived from eggshell for efficient photo-degradation of organic pollutants,” J Clean Prod, vol. 270, p. 122294, Oct. 2020, doi: 10.1016/J.JCLEPRO.2020.122294.

N. Wawrzyniak and J. Suliburska, “Nutritional and health factors affecting the bioavailability of calcium: a narrative review,” Nutr Rev, vol. 79, no. 12, pp. 1307–1320, Nov. 2021, doi: 10.1093/NUTRIT/NUAA138.

M. Al Mijan, Y. K. Lee, and H. S. Kwak, “Effects of nanopowdered eggshell on postmenopausal osteoporosis: a rat study,” Food Science and Biotechnology 2014 23:5, vol. 23, no. 5, pp. 1667–1676, Oct. 2014, doi: 10.1007/S10068-014-0227-9.

E. P. Paschalis et al., “Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality,” Bone, vol. 95, pp. 41–46, Feb. 2017, doi: 10.1016/j.bone.2016.11.002.

A. Setyorini, I. Suandi, I. G. L. Sidiartha, and W. B. Suryawan, “Pencegahan Osteoporosis dengan Suplementasi Kalsium dan Vitamin D pada Penggunaan Kortikosteroid Jangka Panjang,” Sari Pediatri, vol. 11, no. 1, p. 32, Nov. 2016, doi: 10.14238/sp11.1.2009.32-8.

S. Y. Srie Rahayu, T. Aminingsih, and A. Fudholi, “The protective effect of nano calcium produced from freshwater clam shells on the histopathological overview of the liver and kidneys of mice exposed to mercury toxins,” Journal of Trace Elements in Medicine and Biology, vol. 71, p. 126963, May 2022, doi: 10.1016/J.JTEMB.2022.126963.

N. V Ranjan, R., Sawal, R. K., Ranjan, A., and Patil, “Comparison of calcium absorption from nano- and micro-sized calcium salts using everted gut sac technique,” Indian Journal of Animal Science, vol. 89, pp. 337–339, 2019.

S. Zufadhillah, A. Thaib, and L. Handayani, “Efektivitas penambahan nano CaO cangkang kepiting bakau (Scylla serrata) kedalam pakan komersial terhadap pertumbuhan dan frekuensi molting udang galah (Macrobrachium rosenbergii),” Acta Aquatica: Aquatic Sciences Journal, vol. 5, no. 2, pp. 69–74, Oct. 2018, doi: 10.29103/AA.V5I2.811.

E. Ferraz, J. A. F. Gamelas, J. Coroado, C. Monteiro, and F. Rocha, “Eggshell waste to produce building lime: calcium oxide reactivity, industrial, environmental and economic implications,” Materials and Structures/Materiaux et Constructions, vol. 51, no. 5, pp. 1–14, Oct. 2018, doi: 10.1617/s11527-018-1243-7.

H. D. Jirimali et al., “Waste Eggshell-Derived Calcium Oxide and Nanohydroxyapatite Biomaterials for the Preparation of LLDPE Polymer Nanocomposite and Their Thermomechanical Study,” Polymer - Plastics Technology and Engineering, vol. 57, no. 8, pp. 804–811, May 2018, doi: 10.1080/03602559.2017.1354221.

E. Mosaddegh and A. Hassankhani, “Preparation and characterization of nano-CaO based on eggshell waste: Novel and green catalytic approach to highly efficient synthesis of pyrano [4, 3-b]pyrans,” Cuihua Xuebao/Chinese Journal of Catalysis, vol. 35, no. 3, pp. 351–356, 2014, doi: 10.1016/s1872-2067(12)60755-4.

S. Bano and S. Pillai, “Green synthesis of calcium oxide nanoparticles at different calcination temperatures,” World Journal of Science, Technology and Sustainable Development, vol. 17, no. 3, pp. 283–295, 2020, doi: 10.1108/WJSTSD-12-2019-0087/FULL/XML.

A. U. Badnore, N. L. Jadhav, D. V. Pinjari, and A. B. Pandit, “Efficacy of newly developed nano-crystalline calcium oxide catalyst for biodiesel production,” Chemical Engineering and Processing - Process Intensification, vol. 133, pp. 312–319, Nov. 2018, doi: 10.1016/j.cep.2018.09.007.

S. S. Tabrizi Hafez Moghaddas, S. Samareh Moosavi, and R. Kazemi Oskuee, “Green synthesis of calcium oxide nanoparticles in Linum usitatissimum extract and investigation of their photocatalytic and cytotoxicity effects,” Biomass Convers Biorefin, vol. 14, no. 4, pp. 5125–5134, Feb. 2024, doi: 10.1007/S13399-022-02643-6/METRICS.

K. K. Salama, M. F. Ali, and S. M. El Sheikh, “A comparison between Nano Calcium Carbonate, Natural Calcium Carbonate and converted Calcium Hydroxide for Consolidation,” SCIENTIFIC CULTURE, vol. 5, no. 3, pp. 35–40, 2019, doi: 10.5281/zenodo.3340107.

C. L. Gregson et al., “UK clinical guideline for the prevention and treatment of osteoporosis,” Archives of Osteoporosis 2022 17:1, vol. 17, no. 1, pp. 1–46, Apr. 2022, doi: 10.1007/S11657-022-01061-5.

K. K. Hummadi, S. Luo, and S. He, “Adsorption of methylene blue dye from the aqueous solution via bio-adsorption in the inverse fluidized-bed adsorption column using the torrefied rice husk,” Chemosphere, vol. 287, p. 131907, Jan. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.131907.

S. C. Wu, H. C. Hsu, H. F. Wang, S. P. Liou, and W. F. Ho, “Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method,” Molecules, vol. 28, no. 13, Jul. 2023, doi: 10.3390/molecules28134926.

B. Nikmehr, B. Kafle, and R. Al-Ameri, “A review of the advanced treatment techniques for enriching the recycled concrete aggregates for recycled-based concrete: economic, environmental and technical analysis,” Smart and Sustainable Built Environment, vol. 13, no. 3, pp. 560–583, Apr. 2024, doi: 10.1108/SASBE-11-2022-0243/FULL/XML.

Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh, “Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 1, pp. 113–117, Jan. 2014, doi: 10.1016/j.jiec.2013.04.018.

A. R. Butt, S. Ejaz, J. C. Baron, M. Ikram, and S. Ali, “CaO nanoparticles as a potential drug delivery agent for biomedical applications,” Dig J Nanomater Biostruct, vol. 10, no. 3, pp. 799–809, 2015.

G. Gedda, S. Pandey, Y. C. Lin, and H. F. Wu, “Antibacterial effect of calcium oxide nano-plates fabricated from shrimp shells,” Green Chemistry, vol. 17, no. 6, pp. 3276–3280, Jun. 2015, doi: 10.1039/c5gc00615e.

E. Arul, K. Raja, S. Krishnan, K. Sivaji, and S. J. Das, “Bio-Directed Synthesis of Calcium Oxide (CaO) Nanoparticles Extracted from Limestone Using Honey,” J Nanosci Nanotechnol, vol. 18, no. 8, pp. 5790–5793, Feb. 2018, doi: 10.1166/jnn.2018.15386.

W. Warsy, S. Chadijah, and W. Rustiah, “Optimalisasi Kalsium Karbonat dari Cangkang Telur untuk Produksi Pasta Komposit,” Al-Kimia, vol. 4, no. 2, pp. 86–97, 2016, doi: 10.24252/al-kimia.v4i2.1683.

A. Nurlaela, A. Nurlaela, S. U. Dewi, K. Dahlan, and D. S. Soejoko, “Pemanfaatan Limbah Cangkang Telur Ayam dan Bebek sebagai Sumber Kalsium untuk Sintesis Mineral Tulang,” Jurnal Pendidikan Fisika Indonesia, vol. 10, no. 1, Jan. 2014, doi: 10.15294/jpfi.v10i1.3054.

L. Habte, N. Shiferaw, D. Mulatu, T. Thenepalli, R. Chilakala, and J. Ahn, “Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method,” Sustainability, vol. 11, no. 11, p. 3196, Jun. 2019, doi: 10.3390/su11113196.

S. El-Sherbiny, S. M. El-Sheikh, and A. Barhoum, “Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application,” Powder Technol, vol. 279, pp. 290–300, Jul. 2015, doi: 10.1016/J.POWTEC.2015.04.006.

M. S. Tizo et al., “Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution,” Sustainable Environment Research, vol. 28, no. 6, pp. 326–332, Nov. 2018, doi: 10.1016/j.serj.2018.09.002.

D. Iriani and S. W. Hutauruk, “Fortification of Nano Calcium of Freshwater Mussel (Pilsbryoconcha sp.) Shell on Cookies Towards Proximate Composition and Calcium Content,” IOP Conf Ser Earth Environ Sci, vol. 695, no. 1, p. 012057, Mar. 2021, doi: 10.1088/1755-1315/695/1/012057.

S. Sunardi, E. D. Krismawati, and A. Mahayana, “Sintesis dan Karakterisasi Nanokalsium Oksida dari Cangkang Telur,” ALCHEMY Jurnal Penelitian Kimia, vol. 16, no. 2, p. 250, Sep. 2020, doi: 10.20961/alchemy.16.2.40527.250-259.

N. Topić Popović, V. Lorencin, I. Strunjak-Perović, and R. Čož-Rakovac, “Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability,” Applied Sciences 2023, Vol. 13, Page 623, vol. 13, no. 1, p. 623, Jan. 2023, doi: 10.3390/APP13010623.

L. A. Nunes, M. L. S. Silva, J. Z. Gerber, and R. de A. Kalid, “Waste green coconut shells: Diagnosis of the disposal and applications for use in other products,” J Clean Prod, vol. 255, p. 120169, May 2020, doi: 10.1016/J.JCLEPRO.2020.120169.

Y. K. Lee, S. K. Jung, Y. H. Chang, and H. S. Kwak, “Highly bioavailable nanocalcium from oyster shell for preventing osteoporosis in rats,” Int J Food Sci Nutr, vol. 68, no. 8, pp. 931–940, Nov. 2017, doi: 10.1080/09637486.2017.1307948.

T. Aminingsih, S. Y. S. Rahayu, and Y. Yulianita, “Formulation of Instant Granule Containing Nano Calcium from the Shell of Freshwater Mussels (Anodonta woodiana) for Autism Children,” Indonesian Journal of Pharmaceutical Science and Technology, vol. 1, no. 1, pp. 49–56, Jun. 2018, doi: 10.24198/IJPST.V1I1.16125.

A. O. de Alencar, T. E. de Moura, P. C. R. Fernandes, E. Leal, and J. Dantas, “Síntese e Caracterização Físico-Química do Biomaterial CaO Obtido de Cascas de Ovos de Galinha,” Research, Society and Development, vol. 11, no. 8, p. e45311830807, Jun. 2022, doi: 10.33448/rsd-v11i8.30807.

A. H. Prayitno, F. Lorenza, Suparmi, and M. H. Naafi’yan, “Quality of Chicken Sausage Fortified with Nano-Calcium Duck Eggshell in Different Vacuum Packaging during Storage at-18°C,” Jurnal Ilmu Ternak dan Veteriner, vol. 26, no. 4, pp. 152–157, 2021, doi: 10.14334/jitv.v26i4.2900.

A. H. Prayitno, B. Prasetyo, and A. Sutirtoadi, “Synthesis and characteristics of nano calcium oxide from duck eggshells by precipitation method,” IOP Conf Ser Earth Environ Sci, vol. 411, no. 1, 2020, doi: 10.1088/1755-1315/411/1/012033.

S. Sunardi, E. D. Krismawati, and A. Mahayana, “Sintesis dan Karakterisasi Nanokalsium Oksida dari Cangkang Telur,” ALCHEMY Jurnal Penelitian Kimia, vol. 16, no. 2, pp. 250–259, Sep. 2020, doi: 10.20961/ALCHEMY.16.2.40527.250-259.

D. S. Amarasekara, J. Yu, and J. Rho, “Bone Loss Triggered by the Cytokine Network in Inflammatory Autoimmune Diseases,” J Immunol Res, vol. 2015, 2015, doi: 10.1155/2015/832127.

L. G. Rao, N. N. Kang, and A. V. Rao, “Lycopene and Other Antioxidants in the Prevention and Treatment of Osteoporosis in Postmenopausal Women,” Aging: Oxidative Stress and Dietary Antioxidants, pp. 247–258, Jan. 2014, doi: 10.1016/B978-0-12-405933-7.00024-X.

V. Domazetovic, G. Marcucci, T. Iantomasi, M. L. Brandi, and M. T. Vincenzini, “Oxidative stress in bone remodeling: Role of antioxidants,” Clinical Cases in Mineral and Bone Metabolism, vol. 14, no. 2. pp. 209–216, 2017. doi: 10.11138/ccmbm/2017.14.2.209.

A. Cano et al., “Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide,” Maturitas, vol. 107, pp. 7–12, Jan. 2018, doi: 10.1016/J.MATURITAS.2017.10.004.

S. Caprio, N. Santoro, and R. Weiss, “Childhood obesity and the associated rise in cardiometabolic complications,” Nature Metabolism 2020 2:3, vol. 2, no. 3, pp. 223–232, Mar. 2020, doi: 10.1038/s42255-020-0183-z.

C. Marcus, P. Danielsson, and E. Hagman, “Pediatric obesity—Long-term consequences and effect of weight loss,” Journal of Internal Medicine, vol. 292, no. 6. John Wiley and Sons Inc, pp. 870–891, Dec. 01, 2022. doi: 10.1111/joim.13547.

I. R. Reid and E. O. Billington, “Drug therapy for osteoporosis in older adults,” The Lancet, vol. 399, no. 10329, pp. 1080–1092, Mar. 2022, doi: 10.1016/S0140-6736(21)02646-5.

E. L. Yong and S. Logan, “Menopausal osteoporosis: screening, prevention and treatment,” Singapore Med J, vol. 62, no. 4, p. 159, 2021, doi: 10.11622/SMEDJ.2021036.

D. E. Place, R. K. S. Malireddi, J. Kim, P. Vogel, M. Yamamoto, and T. D. Kanneganti, “Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins,” Nature Communications 2021 12:1, vol. 12, no. 1, pp. 1–9, Jan. 2021, doi: 10.1038/s41467-020-20807-8.

S. Arandjelovic et al., “ELMO1 signaling is a promoter of osteoclast function and bone loss,” Nature Communications 2021 12:1, vol. 12, no. 1, pp. 1–12, Aug. 2021, doi: 10.1038/s41467-021-25239-6.

T. Sozen, L. Ozisik, and N. Calik Basaran, “An overview and management of osteoporosis,” Eur. J. Rheumatol., vol. 4, no. 1, pp. 46–56, Mar. 2017, doi: 10.5152/eurjrheum.2016.048.

G. Brunetti et al., “LIGHT/TNFSF14 regulates estrogen deficiency-induced bone loss,” J Pathol, vol. 250, no. 4, pp. 440–451, Apr. 2020, doi: 10.1002/PATH.5385.

S. W. Wade, C. Strader, L. A. Fitzpatrick, M. S. Anthony, and C. D. O’Malley, “Estimating prevalence of osteoporosis: examples from industrialized countries,” Archives of Osteoporosis 2014 9:1, vol. 9, no. 1, pp. 1–10, May 2014, doi: 10.1007/S11657-014-0182-3.

R. Lorenc et al., “Guidelines for the diagnosis and management of osteoporosis in Poland : Update 2017,” Endokrynol Pol, vol. 68, no. 5, pp. 604–609, Nov. 2017, doi: 10.5603/EP.2017.0062.

J. Ramon Vielma, D. Picon, L. Vicente Gutierrez, and N. Deyanira Lara, “Pathophysiology of osteoporosis: genes, oxidative stress and immunopathogeny. A qualitative systematic review,” Avances En Biomedicina, vol. 7, no. 2, pp. 100–111, 2018, Accessed: Feb. 27, 2022. [Online]. Available: https://www.redalyc.org/journal/3313/331359393004/movil/

S. Sahni, D. P. Kiel, and M. T. Hannan, “Vitamin C and Bone Health,” Nutritional Influences on Bone Health, pp. 87–98, 2016, doi: 10.1007/978-3-319-32417-3_8.

W. J. Boyle, W. S. Simonet, and D. L. Lacey, “Osteoclast differentiation and activation,” Nature, vol. 423, no. 6937, pp. 337–342, May 2003, doi: 10.1038/nature01658.

Z. Liu et al., “Role of ROS and nutritional antioxidants in human diseases,” Front Physiol, vol. 9, no. MAY, p. 477, May 2018, doi: 10.3389/FPHYS.2018.00477/BIBTEX.

A. Amalraj and A. Pius, “Relative contribution of oxalic acid, phytate and tannic acid on the bioavailability of calcium from various calcium salts - An in vitro study,” Int Food Res J, vol. 24, no. 3, pp. 1278–1285, 2017, Accessed: Feb. 27, 2022. [Online]. Available: http://www.agris.upm.edu.my:8080/dspace/handle/0/15010

Z. Tong, W. He, X. Fan, and A. Guo, “Biological Function of Plant Tannin and Its Application in Animal Health,” Frontiers in Veterinary Science, vol. 8. Frontiers Media S.A., Jan. 10, 2022. doi: 10.3389/fvets.2021.803657.

Y. Y. Zhang, R. Stockmann, K. Ng, and S. Ajlouni, “Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review,” Compr Rev Food Sci Food Saf, vol. 20, no. 1, pp. 652–685, Jan. 2021, doi: 10.1111/1541-4337.12669.

M. Fraga-Corral et al., “Traditional applications of tannin rich extracts supported by scientific data: Chemical composition, bioavailability and bioaccessibility,” Foods, vol. 10, no. 2. MDPI AG, Feb. 01, 2021. doi: 10.3390/foods10020251.