Characterization of Antibiotic Trimethoprim Adsorption by Granular Activated Carbon

Main Article Content

Fauzan Razansyah
Mindriany Syafila
Marisa Handajani

Abstract

The presence of antibiotics in aquatic environments has been known to lead to the development of bacteria with resistant genes. One type of antibiotic that has been found in the environment is trimethoprim, necessitating methods to remove this substance from the environment. Adsorption is a process that has been extensively studied in the field of water remediation. This study aims to investigate the adsorption of trimethoprim by granular activated carbon (GAC). Experiments were conducted by creating artificial wastewater containing distilled water and trimethoprim, which was then contacted with the adsorbent with variations in pH and trimethoprim concentration measured periodically up to the 3rd hour. Trimethoprim detection was performed using a UV-Vis spectrophotometer. The contact time required to reach equilibrium increased with the initial concentration of trimethoprim. The variations in initial trimethoprim concentrations of 5, 10, 20, 35, and 50 mg/L reached adsorption equilibrium after a contact time of 180 minutes with a GAC mass of 3 grams. All the percentages of trimethoprim removal after the contact time of 180 minutes at various concentrations used in this study were above 98%. The pH level has been proven to affect the trimethoprim removal process. The pseudo-second-order kinetic model has a high correlation with the adsorption process of trimethoprim by GAC. The isotherm model suitable for the interaction between trimethoprim and GAC was the Freundlich model.

Article Details

How to Cite
[1]
F. Razansyah, Mindriany Syafila, and Marisa Handajani, “Characterization of Antibiotic Trimethoprim Adsorption by Granular Activated Carbon”, JSE, vol. 9, no. 3, Jul. 2024.
Section
Articles

References

K. Juengchareonpoon, P. Wanichpongpan, and V. Boonamnuayvitaya, “Trimethoprim adsorption using graphene oxide-carboxymethylcellulose film coated on polyethylene terephthalate as a supporter,” Chem. Eng. Process. - Process Intensif., vol. 169, p. 108641, 2021, doi: https://doi.org/10.1016/j.cep.2021.108641.

J. Dutta and A. A. Mala, “Removal of antibiotic from the water environment by the adsorption technologies: a review.,” Water Sci. Technol. a J. Int. Assoc. Water Pollut. Res., vol. 82, no. 3, pp. 401–426, Aug. 2020, doi: 10.2166/wst.2020.335.

W. Xu et al., “Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks.,” Environ. Pollut., vol. 182, pp. 402–407, Nov. 2013, doi: 10.1016/j.envpol.2013.08.004.

S. Chianese, A. Fenti, J. Blotevogel, D. Musmarra, and P. Iovino, “Trimethoprim removal from wastewater: Adsorption and electro-oxidation comparative case study,” Case Stud. Chem. Environ. Eng., vol. 8, p. 100433, 2023, doi: https://doi.org/10.1016/j.cscee.2023.100433.

V. D. Dang et al., “S-scheme N-doped carbon dots anchored g-C3N4/Fe2O3 shell/core composite for photoelectrocatalytic trimethoprim degradation and water splitting,” Appl. Catal. B Environ., vol. 320, p. 121928, 2023, doi: https://doi.org/10.1016/j.apcatb.2022.121928.

F. M. Mpatani et al., “A review of treatment techniques applied for selective removal of emerging pollutant-trimethoprim from aqueous systems,” J. Clean. Prod., vol. 308, p. 127359, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.127359.

Y. Ji, W. Xie, Y. Fan, Y. Shi, D. Kong, and J. Lu, “Degradation of trimethoprim by thermo-activated persulfate oxidation: Reaction kinetics and transformation mechanisms,” Chem. Eng. J., vol. 286, pp. 16–24, 2016, doi: https://doi.org/10.1016/j.cej.2015.10.050.

S. H. Kim, H. K. Shon, and H. H. Ngo, “Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon,” J. Ind. Eng. Chem., vol. 16, no. 3, pp. 344–349, 2010, doi: https://doi.org/10.1016/j.jiec.2009.09.061.

Z. Bekçi, Y. Seki, and M. K. Yurdakoç, “Equilibrium studies for trimethoprim adsorption on montmorillonite KSF.,” J. Hazard. Mater., vol. 133, no. 1–3, pp. 233–242, May 2006, doi: 10.1016/j.jhazmat.2005.10.029.

T. González, J. R. Domínguez, P. Palo, J. Sánchez-Martín, and E. M. Cuerda-Correa, “Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution,” Desalination, vol. 280, no. 1, pp. 197–202, 2011, doi: https://doi.org/10.1016/j.desal.2011.07.012.

F. C. C. R. de Paula, A. C. de Pietro, and Q. B. Cass, “Simultaneous quantification of sulfamethoxazole and trimethoprim in whole egg samples by column-switching high-performance liquid chromatography using restricted access media column for on-line sample clean-up.,” J. Chromatogr. A, vol. 1189, no. 1–2, pp. 221–226, May 2008, doi: 10.1016/j.chroma.2007.08.046.

S. Zhang et al., “Efficient biodegradation of trimethoprim and transformation mechanism using the photoelectrocatalytic system,” J. Water Process Eng., vol. 54, p. 103926, 2023, doi: https://doi.org/10.1016/j.jwpe.2023.103926.

Q. Bu, B. Wang, J. Huang, S. Deng, and G. Yu, “Pharmaceuticals and personal care products in the aquatic environment in China: A review,” J. Hazard. Mater., vol. 262, pp. 189–211, 2013, doi: https://doi.org/10.1016/j.jhazmat.2013.08.040.

Y. Luo, R. Su, H. Yao, A. Zhang, S. Xiang, and L. Huang, “Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices.,” Environ. Sci. Pollut. Res. Int., vol. 28, no. 44, pp. 62572–62582, Nov. 2021, doi: 10.1007/s11356-021-15146-0.

J. Li and H. Zhang, “Factors influencing adsorption and desorption of trimethoprim on marine sediments: mechanisms and kinetics,” Environ. Sci. Pollut. Res., vol. 24, no. 27, pp. 21929–21937, 2017, doi: 10.1007/s11356-017-9693-y.

M. De Liguoro, V. Di Leva, M. Dalla Bona, R. Merlanti, G. Caporale, and G. Radaelli, “Sublethal effects of trimethoprim on four freshwater organisms.,” Ecotoxicol. Environ. Saf., vol. 82, pp. 114–121, Aug. 2012, doi: 10.1016/j.ecoenv.2012.05.016.

J. Han, M.-C. Lee, D.-H. Kim, Y. H. Lee, J. C. Park, and J.-S. Lee, “Effects of trimethoprim on life history parameters, oxidative stress, and the expression of cytochrome P450 genes in the copepod Tigriopus japonicus.,” Chemosphere, vol. 159, pp. 159–165, Sep. 2016, doi: 10.1016/j.chemosphere.2016.05.085.

B. Kolar, L. Arnuš, B. Jeretin, A. Gutmaher, D. Drobne, and M. K. Durjava, “The toxic effect of oxytetracycline and trimethoprim in the aquatic environment,” Chemosphere, vol. 115, pp. 75–80, 2014, doi: https://doi.org/10.1016/j.chemosphere.2014.02.049.

X. Luo, Z. Zheng, J. Greaves, W. J. Cooper, and W. Song, “Trimethoprim: Kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment,” Water Res., vol. 46, no. 4, pp. 1327–1336, 2012, doi: https://doi.org/10.1016/j.watres.2011.12.052.

C. O. Ania, J. G. Pelayo, and T. J. Bandosz, “Reactive adsorption of penicillin on activated carbons,” Adsorption, vol. 17, no. 3, pp. 421–429, 2011, doi: 10.1007/s10450-010-9271-9.

T. J. Bandosz and C. O. Ania, “Chapter 4 Surface chemistry of activated carbons and its characterization,” in Activated Carbon Surfaces in Environmental Remediation, vol. 7, T. J. B. T.-I. S. and T. Bandosz, Ed. Elsevier, 2006, pp. 159–229.

Z. Aksu and Ö. Tunç, “Application of biosorption for penicillin G removal: comparison with activated carbon,” Process Biochem., vol. 40, no. 2, pp. 831–847, 2005, doi: https://doi.org/10.1016/j.procbio.2004.02.014.

C. O. Ania, J. B. Parra, J. A. Menéndez, and J. J. Pis, “Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals,” Water Res., vol. 41, no. 15, pp. 3299–3306, 2007, doi: https://doi.org/10.1016/j.watres.2007.05.006.

M. V Chaubal, G. F. Payne, C. H. Reynolds, and R. L. Albright, “Equilibria for the adsorption of antibiotics onto neutral polymeric sorbents: Experimental and modeling studies.,” Biotechnol. Bioeng., vol. 47, no. 2, pp. 215–226, Jul. 1995, doi: 10.1002/bit.260470213.

K. A. Robberson, A. B. Waghe, D. A. Sabatini, and E. C. Butler, “Adsorption of the quinolone antibiotic nalidixic acid onto anion-exchange and neutral polymers.,” Chemosphere, vol. 63, no. 6, pp. 934–941, May 2006, doi: 10.1016/j.chemosphere.2005.09.047.

K. Gupta and P. Shrivastava, “Development and validation of UV spectrophotometric method for trimethoprim in pure and marketed formulation,” Int. J. Health Sci. (Qassim)., vol. 6, no. March, pp. 10829–10839, 2022, doi: 10.53730/ijhs.v6ns2.7860.

J. Berges, S. Moles, M. P. Ormad, R. Mosteo, and J. Gómez, “Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal powdered activated carbon,” Environ. Sci. Pollut. Res., vol. 28, no. 7, pp. 8442–8452, 2021, doi: 10.1007/s11356-020-10972-0.

M. A. Opanga, V. O. Madadi, S. O. Wandiga, H. M. Nose, C. W. Mirikau, and M. Umuro, “Adsorption Studies of Trimethoprim Antibiotic on Powdered and Granular Activated Carbon in Distilled and Natural Water,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 11, pp. 223–230, 2018, doi: 10.32628/ijsrset1841117.

H. Liu et al., “Effect on physical and chemical characteristics of activated carbon on adsorption of trimethoprim: Mechanisms study,” RSC Adv., vol. 5, no. 104, pp. 85187–85195, 2015, doi: 10.1039/c5ra17968h.

Z. Guo, L. Xu, C. Liu, F. Sun, Y. Kang, and S. Liang, “Comparison of physicochemical properties of activated carbons derived from biomass wastes by H4P2O7 activation: adsorption of trimethoprim,” Desalin. Water Treat., vol. 57, no. 46, pp. 21957–21967, 2016, doi: 10.1080/19443994.2015.1127782.

L. Prichard and V. Barwick, “Preparation of Calibration Curves A Guide to Best Practice Contact Point : Prepared by :,” Lgc, no. September 2003, pp. 1–27, 2019, doi: 10.13140/RG.2.2.36338.76488.

M. Gouamid, M. R. Ouahrani, and M. B. Bensaci, “Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using Date palm Leaves,” Energy Procedia, vol. 36, pp. 898–907, 2013, doi: 10.1016/j.egypro.2013.07.103.

F. C. C. Moura, R. D. F. Rios, and B. R. L. Galvão, “Emerging contaminants removal by granular activated carbon obtained from residual Macauba biomass.,” Environ. Sci. Pollut. Res. Int., vol. 25, no. 26, pp. 26482–26492, Sep. 2018, doi: 10.1007/s11356-018-2713-8.

B. Peng et al., “Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions,” Sci. Rep., vol. 6, no. 1, p. 31920, 2016, doi: 10.1038/srep31920.

J. Rivera-Utrilla, M. I. Bautista‐Toledo, M. A. Ferro‐García, and C. Moreno-Castilla, “Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption,” J. Chem. Technol. Biotechnol., vol. 76, pp. 1209–1215, Dec. 2001, doi: 10.1002/jctb.506.

M. E. Peñafiel, E. Vanegas, D. Bermejo, J. M. Matesanz, and M. P. Ormad, “Correction to: Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution (Hyperfine Interactions, (2019), 240, 1, (71), 10.1007/s10751-019-1612-9),” Hyperfine Interact., vol. 240, no. 1, 2019, doi: 10.1007/s10751-019-1643-2.

Z. Xue et al., “Adsorption of trimethoprim and sulfamethoxazole using residual carbon from coal gasification slag: Behavior, mechanism and cost-benefit analysis,” Fuel, vol. 348, no. April, p. 128508, 2023, doi: 10.1016/j.fuel.2023.128508.

W. Plazinski, W. Rudzinski, and A. Plazinska, “Theoretical models of sorption kinetics including a surface reaction mechanism: A review,” Adv. Colloid Interface Sci., vol. 152, no. 1, pp. 2–13, 2009, doi: https://doi.org/10.1016/j.cis.2009.07.009.

Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochem., vol. 34, no. 5, pp. 451–465, 1999, doi: https://doi.org/10.1016/S0032-9592(98)00112-5.

H. Liu, J. Zhang, N. Bao, C. Cheng, L. Ren, and C. Zhang, “Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: Adsorption of trimethoprim,” J. Hazard. Mater., vol. 235–236, pp. 367–375, 2012, doi: https://doi.org/10.1016/j.jhazmat.2012.08.015.

C. Valderrama, X. Gamisans, F. X. de las Heras, and J. Cortina, “Kinetics of polycyclic aromatic hydrocarbons removal using hyper-cross-linked polymeric sorbents Macronet Hypersol MN200,” React. Funct. Polym., vol. 67, pp. 1515–1529, Dec. 2007, doi: 10.1016/j.reactfunctpolym.2007.07.020.

L. D. Marsolla, G. M. Brito, J. C. C. Freitas, and E. R. C. Coelho, “Removing 2,4-D micropollutant herbicide using powdered activated carbons: the influence of different aqueous systems on adsorption process.,” J. Environ. Sci. Heal. Part. B, Pestic. food Contam. Agric. wastes, vol. 57, no. 7, pp. 588–596, 2022, doi: 10.1080/03601234.2022.2084311.

F. Bonvin, L. Jost, L. Randin, E. Bonvin, and T. Kohn, “Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent,” Water Res., vol. 90, pp. 90–99, 2016, doi: https://doi.org/10.1016/j.watres.2015.12.001.

L. Nielsen and T. Bandosz, “Analysis of the Competitive Adsorption of Pharmaceuticals on Waste Derived Materials,” Chem. Eng. J., vol. 287, Nov. 2015, doi: 10.1016/j.cej.2015.11.016.

S. Ismadji and S. K. Bhatia, “A Modified Pore-Filling Isotherm for Liquid-Phase Adsorption in Activated Carbon,” no. 9, pp. 1488–1498, 2001.

X. Hu et al., “Insights on size-exclusion effect of ordered mesoporous carbon for selective antibiotics adsorption under the interference of natural organic matter,” Chem. Eng. J., vol. 458, p. 141440, 2023, doi: https://doi.org/10.1016/j.cej.2023.141440.

E. Laforce, K. Dejaeger, M. Vanoppen, E. Cornelissen, J. De Clercq, and P. Vermeir, “Thorough Validation of Optimized Size Exclusion Chromatography-Total Organic Carbon Analysis for Natural Organic Matter in Fresh Waters,” Molecules, vol. 29, no. 9. 2024, doi: 10.3390/molecules29092075.