Treating Waste with Waste : Utilization of Iron Powder for the Reduction of Chromium (Cr6+) in Metal Plating Industry Liquid Waste
Main Article Content
Abstract
Metal plating industry waste is the main source of environmental pollution due to heavy metal chromium (Cr6+). The method commonly used in processing chromium metal waste (Cr6+) in industry is by means of reduction and coagulation. Chromium metal (Cr6+) is highly toxic because it is highly unstable compared to chromium (Cr3+). Therefore, chromium waste (Cr6+) must be reduced to chromium (Cr3+) before being discharged into the environment. The purpose of the study is to reduce the content of chromium ions (Cr6+) in liquid waste of the metal coating industry by the reduction and coagulation process using waste iron powder and calcium hydroxide. Liquid chromium waste (Cr6+) and iron powder waste are taken from the metal coating industry in Palur Karanganyar, Central Java. Iron waste is in the form of powder that comes from the sanding process that is no longer used. The parameters studied were the weight of iron powder, the addition of H2SO4 2N, and the reduction time. The measurement of chrom ion levels (Cr6+) in all treatments was determined by UV-Vis Spectroscopy. The results of the study showed that the chromium level (Cr6+) of liquid waste of the metal coating industry was 749 mg/L. The optimum condition for reducing chromium (Cr6+) is to use 3 gr iron powder, 10 ml of H2SO4 2N, and a reduction time of 7 minutes there is a decrease in chromium (Cr6+) levels by 100% with a chromium level (Cr6+) of 0 mg/L. This result meets the Regional Regulation of Central Java Province Number 5 of 2012 concerning Liquid Wastewater Quality Standards for the Metal Plating Industry which requires a maximum chromium level (Cr6+) of 0.1 mg/L.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
J. fang Lv, X. Tong, Y. xing Zheng, and Z. yue Lan, “Kinetics of hexavalent chromium reduction by grey cast iron powder,” Can. Metall. Q., vol. 58, no. 3, pp. 262–271, Jul. 2019, doi: 10.1080/00084433.2018.1553751.
S. Akar, B. Lorestani, S. Sobhanardakani, M. Cheraghi, and O. Moradi, “Removal of Ni(II) and Cr(VI) Ions From Electroplating Wastewater Using Ferrous Sulfate,” J. Adv. Environ. Heal. Res., vol. 9, no. 2, pp. 149–158, Apr. 2021, doi: 10.32598/JAEHR.9.2.1203.
S. Rajoria, M. Vashishtha, and V. K. Sangal, “Treatment of electroplating industry wastewater: a review on the various techniques,” Environ. Sci. Pollut. Res. 2022 2948, vol. 29, no. 48, pp. 72196–72246, Jan. 2022, doi: 10.1007/S11356-022-18643-Y.
J. Drápala et al., “Processing of Metal Waste—Sludge from the Galvanizing Plants,” Met. 2022, Vol. 12, Page 1947, vol. 12, no. 11, p. 1947, Nov. 2022, doi: 10.3390/MET12111947.
X. Yu, Y. Hou, X. Ren, C. Sun, and M. Wang, “Research progress on the removal, recovery and direct high-value materialization of valuable metal elements in electroplating/electroless plating waste solution,” J. Water Process Eng., vol. 46, p. 102577, Apr. 2022, doi: 10.1016/J.JWPE.2022.102577.
Y. Xiao et al., “Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag,” Sci. Total Environ., vol. 838, p. 156453, Sep. 2022, doi: 10.1016/J.SCITOTENV.2022.156453.
G. Hu et al., “Experimental study on injection of ferrous sulphate for remediation of a clayey soil contaminated with hexavalent chromium,” Environ. Earth Sci., vol. 82, no. 7, 2023, doi: 10.1007/s12665-023-10853-y.
J. G. Paithankar, S. Saini, S. Dwivedi, A. Sharma, and D. K. Chowdhuri, “Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction,” Chemosphere, vol. 262, p. 128350, Jan. 2021, doi: 10.1016/J.CHEMOSPHERE.2020.128350.
D. Karunanidhi, P. Aravinthasamy, T. Subramani, R. Chandrajith, N. Janardhana Raju, and I. M. H. R. Antunes, “Provincial and seasonal influences on heavy metals in the Noyyal River of South India and their human health hazards,” Environ. Res., vol. 204, p. 111998, Mar. 2022, doi: 10.1016/J.ENVRES.2021.111998.
M. Zaynab et al., “Health and environmental effects of heavy metals,” J. King Saud Univ. - Sci., vol. 34, no. 1, p. 101653, Jan. 2022, doi: 10.1016/J.JKSUS.2021.101653.
D. M. Hausladen and S. Fendorf, “Hexavalent Chromium Generation within Naturally Structured Soils and Sediments,” Environ. Sci. Technol., vol. 51, no. 4, pp. 2058–2067, Feb. 2017, doi: 10.1021/acs.est.6b04039.
C. Varadharajan et al., “Reoxidation of Chromium(III) Products Formed under Different Biogeochemical Regimes,” Environ. Sci. Technol., p. acs.est.6b06044, Apr. 2017, doi: 10.1021/acs.est.6b06044.
S. S. Kerur, S. Bandekar, M. S. Hanagadakar, S. S. Nandi, G. M. Ratnamala, and P. G. Hegde, “Removal of hexavalent Chromium-Industry treated water and Wastewater: A review,” Mater. Today Proc., vol. 42, pp. 1112–1121, Jan. 2021, doi: 10.1016/J.MATPR.2020.12.492.
A. A. Ambi, M. T. Isa, A. B. Ibrahim, M. Bashir, S. Ekwuribe, and A. B. Sallau, “Hexavalent chromium bioremediation using Hibiscus Sabdariffa calyces extract: Process parameters, kinetics and thermodynamics,” Sci. African, vol. 10, p. e00642, 2020, doi: 10.1016/j.sciaf.2020.e00642.
M. A. Abdulaziz et al., “Removal of Hexavalent Chromium from Aqueous Solution by the Pod of Acacia gerrardii,” Polish J. Chem. Technol., vol. 21, no. 2, pp. 14–19, Jun. 2019, doi: 10.2478/PJCT-2019-0014.
C. Joe-Wong, K. L. Weaver, S. T. Brown, and K. Maher, “Chromium isotope fractionation during reduction of Chromium(VI) by Iron(II/III)-bearing clay minerals,” Geochim. Cosmochim. Acta, vol. 292, pp. 235–253, Jan. 2021, doi: 10.1016/J.GCA.2020.09.034.
Z. He, J. Shen, J. Zhang, W. Lin, and H. Gu, “Cleaner, High-Efficiency, and High-Value Conversion of Chrome-Containing Leather Solid Waste into Carbon Quantum Dots as Renewable Bimetallic Ions Detection Sensors,” ACS Sustain. Chem. Eng., vol. 11, no. 35, pp. 13126–13141, Sep. 2023, doi: 10.1021/ACSSUSCHEMENG.3C03382/SUPPL_FILE/SC3C03382_SI_001.PDF.
M. Sharma, S. R. Dey, and P. Kumar, “Antioxidant Defence: A Key Mechanism of Chromium Tolerance,” Environ. Sci. Eng., vol. Part F1975, pp. 91–116, 2023, doi: 10.1007/978-3-031-44029-8_5.
W. Zhang, S. Song, M. Nath, Z. Xue, G. Ma, and Y. Li, “Inhibition of Cr6+ by the formation of in-situ Cr3+ containing solid-solution in Al2O3–CaO–Cr2O3–SiO2 system,” Ceram. Int., vol. 47, no. 7, pp. 9578–9584, Apr. 2021, doi: 10.1016/J.CERAMINT.2020.12.092.
J. B. Vincent, “Chromium: Sources, Speciation, Toxicity, and Chemistry,” Environ. Sci. Eng., vol. Part F1975, pp. 43–62, 2023, doi: 10.1007/978-3-031-44029-8_3.
P. Cui, Z. Cheng, and J. Sun, “Effects of different chromium sources on growth performance, serum biochemical, hepatopancreas glycometabolism enzymes activities, IR, GLUT2 and SGLT1 gene expression of common carp (Cyprinus carpio),” Aquac. Res., vol. 53, no. 4, pp. 1573–1581, Mar. 2022, doi: 10.1111/ARE.15692.
S. Khan, M. Muhammad, J. S. Algethami, H. M. Al-Saidi, A. Almahri, and A. A. Hassanian, “Synthesis, Characterization and Applications of Schiff Base Chemosensor for Determination of Cr(III) Ions,” J. Fluoresc., vol. 32, no. 5, pp. 1889–1898, Sep. 2022, doi: 10.1007/S10895-022-02990-7/METRICS.
L. E. Wu et al., “Carcinogenic Chromium(VI) Compounds Formed by Intracellular Oxidation of Chromium(III) Dietary Supplements by Adipocytes,” Angew. Chemie - Int. Ed., vol. 55, no. 5, pp. 1742–1745, Jan. 2016, doi: 10.1002/anie.201509065.
Z. F. Chen, Y. S. Zhao, and Q. Li, “Characteristics and kinetics of hexavalent chromium reduction by gallic acid in aqueous solutions,” Water Sci. Technol., vol. 71, no. 11, pp. 1694–1700, 2015, doi: 10.2166/WST.2015.157.
S. Li et al., “In situ synthesis of layered double hydroxides on γ -Al 2 O 3 and its application in chromium(VI) removal,” Water Sci. Technol., p. wst2017012, 2017, doi: 10.2166/wst.2017.012.
J. Buters and T. Biedermann, “Chromium(VI) Contact Dermatitis: Getting Closer to Understanding the Underlying Mechanisms of Toxicity and Sensitization!,” J. Invest. Dermatol., vol. 137, no. 2, pp. 274–277, 2017, doi: 10.1016/j.jid.2016.11.015.
V. Pinos, A. Dafinov, F. Medina, and J. Sueiras, “Chromium(VI) reduction in aqueous medium by means of catalytic membrane reactors,” J. Environ. Chem. Eng., vol. 4, no. 2, pp. 1880–1889, 2016, doi: 10.1016/j.jece.2016.03.008.
J. B. Islam, M. R. Islam, M. Furukawa, I. Tateishi, H. Katsumata, and S. Kaneco, “Ag-modified g-C3N4 with enhanced activity for the photocatalytic reduction of hexavalent chromium in the presence of EDTA under ultraviolet irradiation,” Environ. Technol., vol. 44, no. 23, pp. 3627–3640, Oct. 2023, doi: 10.1080/09593330.2022.2068379.
K. Ayagh, M. Shirzad-Siboni, M. Tahergorabi, R. Dewil, A. Mohagheghian, and K. Godini, “LED-enhanced photocatalytic reduction of hexavalent chromium by Cu-doped ZnO nanorods: kinetic modeling, cost analysis, and toxicity assessment,” Int. J. Environ. Anal. Chem., Jan. 2024, doi: 10.1080/03067319.2023.2297004.
A. Bakshi and A. K. Panigrahi, “Chromium Contamination in Soil and Its Bioremediation: An Overview,” Adv. Bioremediation Phytoremediation Sustain. Soil Manag. Princ. Monit. Remediat., pp. 229–248, Jan. 2022, doi: 10.1007/978-3-030-89984-4_15.
T. Chen, Z. Zhou, S. Xu, H. Wang, and W. Lu, “Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge,” Bioresour. Technol., vol. 190, pp. 388–394, 2015, doi: 10.1016/j.biortech.2015.04.115.
W. Jiang, M. Pelaez, D. D. Dionysiou, M. H. Entezari, D. Tsoutsou, and K. O’Shea, “Chromium(VI) removal by maghemite nanoparticles,” Chem. Eng. J., vol. 222, pp. 527–533, 2013, doi: 10.1016/j.cej.2013.02.049.
World Health Organization, Chromium in Drinking-Water: A Background Document for Development of World Health Organisation Guidelines for Drinking Water (WHO/HEP/ECH/WSH/2020.3); 2020.
Pemerintah Republik Indonesia, Peraturan Pemerintah Republik Indonesia Nomor 82 Tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. 2001.
B. Verma and C. Balomajumder, “Hexavalent chromium reduction from real electroplating wastewater by chemical precipitation,” Bull. Chem. Soc. Ethiop., vol. 34, no. 1, pp. 67–74, Apr. 2020, doi: 10.4314/bcse.v34i1.6.
M. H. Nouri, ; Gholam, R. Khayati, and E. Darezeresh-Ki, “Removal of hexavalent chromium from ferrochrome dust effluent by chemical precipitation method,” J. Adv. Environ. Res. Technol., vol. 1, no. 1, pp. 17–26, 2023, doi: 10.22034/JAERT.1.1.17.
H. Peng and J. Guo, “Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review,” Environ. Chem. Lett. 2020 186, vol. 18, no. 6, pp. 2055–2068, Jul. 2020, doi: 10.1007/S10311-020-01058-X.
D. Wang, G. Li, S. Qin, W. Tao, S. Gong, and J. Wang, “Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation,” Ecotoxicol. Environ. Saf., vol. 208, p. 111734, Jan. 2021, doi: 10.1016/J.ECOENV.2020.111734.
S. Krishnan et al., “Current technologies for recovery of metals from industrial wastes: An overview,” Environ. Technol. Innov., vol. 22, p. 101525, May 2021, doi: 10.1016/J.ETI.2021.101525.
M. Yaseen, Maria, M. U. Farooq, W. Ahmad, and F. Subhan, “Fabrication of rGO-CuO and/or Ag2O nanoparticles incorporated polyvinyl acetate based mixed matrix membranes for the removal of Cr6+ from anti-corrosive paint industrial wastewater,” J. Environ. Chem. Eng., vol. 9, no. 2, p. 105151, Apr. 2021, doi: 10.1016/J.JECE.2021.105151.
C. Yu, Y. Zhu, Y. Yan, Y. Wu, and L. Zou, “Dual-selective imprinted membrane with asymmetric recognition sites for high-selectivity toward TBBPA and Cr6+ separation,” Sep. Purif. Technol., vol. 345, p. 127402, Oct. 2024, doi: 10.1016/J.SEPPUR.2024.127402.
W. Shi, Y. Yang, J. Cai, C. Xu, J. Lu, and S. Wu, “Fabrication and Evaluation of Carboxymethyl Cellulose/PVA Electrospun Nanofiber Membrane for the Removal of Cu 2+ and Cr 6+ Ions,” Apr. 2023, doi: 10.20944/PREPRINTS202304.0671.V1.
O. Y. Fazilet Erman, Tubay Kaya, Sevine Aydin, Orban Erman, “The Treatment of Cr6+ Containing Wastewater by Fe/C Micro Electrolysis System,” Fresenius environnmental Bull., vol. 29, no. 5, pp. 3344–3353, 2020.
S. Vargas-Villanueva et al., “Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+,” J. Environ. Chem. Eng., vol. 11, no. 5, p. 110246, Oct. 2023, doi: 10.1016/J.JECE.2023.110246.
A. A. Ambi, M. T. Isa, A. B. Ibrahim, M. Bashir, S. Ekwuribe, and A. B. Sallau, “Hexavalent chromium bioremediation using Hibiscus Sabdariffa calyces extract: Process parameters, kinetics and thermodynamics,” Sci. African, vol. 10, p. e00642, Nov. 2020, doi: 10.1016/J.SCIAF.2020.E00642.
J. J. Coetzee, N. Bansal, and E. M. N. Chirwa, “Chromium in Environment, Its Toxic Effect from Chromite-Mining and Ferrochrome Industries, and Its Possible Bioremediation,” Expo. Heal., vol. 12, no. 1, pp. 51–62, Mar. 2020, doi: 10.1007/S12403-018-0284-Z/METRICS.
M. Y. Azis, N. N. Amedyan, Hanefiatni, and A. Suprabawati, “Study of reducing Chromium (VI) to Chromium (III) ion using reduction and coagulation methods for electroplating industrial waste,” J. Phys. Conf. Ser., vol. 1763, no. 1, 2021, doi: 10.1088/1742-6596/1763/1/012042.
D. Mahringer, S. S. Zerelli, U. Dippon, and A. S. Ruhl, “Pilot scale hexavalent chromium removal with reduction, coagulation, filtration and biological iron oxidation,” Sep. Purif. Technol., vol. 253, p. 117478, Dec. 2020, doi: 10.1016/J.SEPPUR.2020.117478.
L. Wang, X. Wang, W. Wang, F. Zeng, and L. Qi, “Removal of Cr(VI) from wastewater by M-HAFAC based on modified fly ash,” Sep. Sci. Technol., vol. 58, no. 3, pp. 562–572, Feb. 2023, doi: 10.1080/01496395.2022.2138435.
C. Joe-Wong, G. E. Brown, and K. Maher, “Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals,” Environ. Sci. Technol., vol. 51, no. 17, pp. 9817–9825, 2017, doi: 10.1021/acs.est.7b02934.
J. fang Lv, X. Tong, Y. xing Zheng, and Z. yue Lan, “Kinetics of hexavalent chromium reduction by grey cast iron powder,” Can. Metall. Q., vol. 58, no. 3, pp. 262–271, Jul. 2019, doi: 10.1080/00084433.2018.1553751.
Y. S. Hedberg, Z. Wei, and F. Moncada, “Release of hexavalent chromium from cement collected in Honduras and Sweden,” 2020, doi: 10.1111/cod.13508.
S. Sunardi, S. Sumardiyono, M. Mardiyono, N. Hidayati, and S. Soebiyanto, “Utilization of iron scrap into copperas and rambutan (Nephelium lappaceum L.) peel extract into environmentally friendly iron nanoparticles for hexavalent chromium removal and its kinetics,” Environ. Qual. Manag., Mar. 2023, doi: 10.1002/tqem.22153.
S. Sumardi et al., “Processing industrial iron waste into ferrous sulfate as an iron fortification: A preliminary study,” IOP Conf. Ser. Earth Environ. Sci., vol. 1017, no. 1, p. 012029, Apr. 2022, doi: 10.1088/1755-1315/1017/1/012029.
Y. Chen et al., “Efficient extraction and separation of zinc and iron from electric arc furnace dust by roasting with FeSO4·7H2O followed by water leaching,” Sep. Purif. Technol., vol. 281, p. 119936, Jan. 2022, doi: 10.1016/J.SEPPUR.2021.119936.
J. O. Ighere, K. Honjoya, and R. C. Chawla, “Using Ferrous Ion for the Reductive Degradation of Hexavalent Chromium,” Adv. Chem. Eng. Sci., vol. 05, no. 01, pp. 15–22, 2015, doi: 10.4236/aces.2015.51002.
S. Sunardi, S. Sumardiyono, M. Mardiyono, N. Hidayati, and S. Soebiyanto, “Utilization of iron scrap into copperas and rambutan (Nephelium lappaceum L.) peel extract into environmentally friendly iron nanoparticles for hexavalent chromium removal and its kinetics,” Environ. Qual. Manag., 2023, doi: 10.1002/TQEM.22153.
M. Kovacs, S. Sorin, L. Toth, and A. Gireadă, “Monitoring the Quality of Groundwater Samples Before and After Retrofitting A Chrome-Plating Plant that Carried out the Transition from Cr6+ to Cr3+,” in International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2023, pp. 169–176. doi: 10.5593/sgem2023/5.1/s20.21.
M. Petrescu et al., “Analytical methods for the determination of Cr6+ from fixed source emissions,” Rom. J. Ecol. Environ. Chem., vol. 2, no. 2, pp. 185–192, 2020, doi: 10.21698/rjeec.2020.223.
Peraturan Daerah Provinsi Jawa Tengah, Peraturan Daerah Provinsi Jawa Tengah Nomor 5 Tahun 2012 Tentang Perubahan Atas Peraturan Daerah Provinsi Jawa Tengah Nomor 10 Tahun 2004 Tentang Baku Mutu Air Limbah, vol. 66. 2012.
R. B. Mauna, I. Ma, and P. T. Nigrum, Kandungan Kromium (Cr) pada Limbah Cair dan Air Sungai serta Keluhan Kesehatan Masyarakat di Sekitar Industri Elektroplating. 2015. [Online]. Available: https://repository.unej.ac.id/handle/123456789/68964
B. Verma and C. Balomajumder, “Hexavalent chromium reduction from real electroplating wastewater by chemical precipitation,” Bull. Chem. Soc. Ethiop., vol. 34, no. 1, pp. 67–74, Apr. 2020, doi: 10.4314/BCSE.V34I1.6.
N. Wang, J. L. Kunz, C. D. Ivey, C. G. Ingersoll, M. C. Barnhart, and E. A. Glidewell, “Toxicity of Chromium (VI) to Two Mussels and an Amphipod in Water-Only Exposures With or Without a Co-stressor of Elevated Temperature, Zinc, or Nitrate,” Arch. Environ. Contam. Toxicol., vol. 72, no. 3, pp. 449–460, Apr. 2017, doi: 10.1007/s00244-017-0377-x.
M. Nazal and H. Zhao, “Heavy Metals - Their Environmental Impacts and Mitigation”, Accessed: Jun. 21, 2024. [Online]. Available: https://books.google.com/books/about/Heavy_Metals.html?hl=id&id=47ZaEAAAQBAJ
S. Prasad et al., “Chromium contamination and effect on environmental health and its remediation: A sustainable approaches,” J. Environ. Manage., vol. 285, p. 112174, May 2021, doi: 10.1016/J.JENVMAN.2021.112174.
N. Aqilah Mohamad et al., “Copperas as Iron-Based Coagulant for Water and Wastewater Treatment: A Review,” Review, vol. 12, no. 3, pp. 4155–4176, 2022, doi: 10.33263/BRIAC123.41554176.
Sunardi, Ashadi, S. B. Rahardjo, and Inayati, “Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract,” J. Phys. Conf. Ser., vol. 795, no. 1, 2017, doi: 10.1088/1742-6596/795/1/012063.
Sunardi, Ashadi, and S. B. Rahardjo, “Green Synthesis and Characterization of nano Zero Valent Iron Using Banana Peel Extract,” J. Environ. Earth Sci., vol. 7, no. 8, pp. 80–84, 2017, Accessed: Jul. 17, 2018. [Online]. Available: http://iiste.org/Journals/index.php/JEES/article/view/38296
M. H. Dehghani, D. Sanaei, I. Ali, and A. Bhatnagar, “Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies,” J. Mol. Liq., vol. 215, pp. 671–679, 2016, doi: 10.1016/j.molliq.2015.12.057.
T. T. Zhang, Q. Xue, and M. L. Wei, “Leachability and Stability of Hexavalent-Chromium-Contaminated Soil Stabilized by Ferrous Sulfate and Calcium Polysulfide,” Appl. Sci. 2018, Vol. 8, Page 1431, vol. 8, no. 9, p. 1431, Aug. 2018, doi: 10.3390/APP8091431.
M. Y. Azis, N. N. Amedyan, Hanefiatni, and A. Suprabawati, “Study of reducing Chromium (VI) to Chromium (III) ion using reduction and coagulation methods for electroplating industrial waste,” J. Phys. Conf. Ser., vol. 1763, no. 1, p. 012042, Jan. 2021, doi: 10.1088/1742-6596/1763/1/012042.
X. Lu, B. Li, L. Guo, G. Zhang, and P. Wang, “Reduction and stabilization remediation of hexavalent chromium (Cr6+)-contaminated soil,” Ekoloji, vol. 28, no. 107, pp. 973–980, 2019, Accessed: Jul. 04, 2022. [Online].
T. T. Zhang et al., “Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium-contaminated soil stabilized by ferrous sulfate,” Environ. Prog. Sustain. Energy, vol. 38, no. 2, pp. 500–507, Mar. 2019, doi: 10.1002/EP.12936.